Back to Search Start Over

Using event sequence alignment to automatically segment web users for prediction and recommendation

Authors :
Luu, Vinh Trung
Modélisation, Intelligence, Processus et Système (MIPS)
Ecole Nationale Supérieure d'Ingénieur Sud Alsace-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-IUT de Colmar-IUT de Mulhouse
Université de Haute Alsace - Mulhouse
Pierre-Alain Muller
Source :
Web. Université de Haute Alsace-Mulhouse, 2016. English. ⟨NNT : 2016MULH0098⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

This thesis explored the application of sequence alignment in web usage mining, including user clustering and web prediction and recommendation.This topic was chosen as the online business has rapidly developed and gathered a huge volume of information and the use of sequence alignment in the field is still limited. In this context, researchers are required to build up models that rely on sequence alignment methods and to empirically assess their relevance in user behavioral mining. This thesis presents a novel methodological point of view in the area and show applicable approaches in our quest to improve previous related work. Web usage behavior analysis has been central in a large number of investigations in order to maintain the relation between users and web services. Useful information extraction has been addressed by web content providers to understand users’ need, so that their content can be correspondingly adapted. One of the promising approaches to reach this target is pattern discovery using clustering, which groups users who show similar behavioral characteristics. Our research goal is to perform users clustering, in real time, based on their session similarity.; Une masse de données importante est collectée chaque jour par les gestionnaires de site internet sur les visiteurs qui accèdent à leurs services. La collecte de ces données a pour objectif de mieux comprendre les usages et d'acquérir des connaissances sur le comportement des visiteurs. A partir de ces connaissances, les gestionnaires de site peuvent décider de modifier leur site ou proposer aux visiteurs du contenu personnalisé. Cependant, le volume de données collectés ainsi que la complexité de représentation des interactions entre le visiteur et le site internet nécessitent le développement de nouveaux outils de fouille de données. Dans cette thèse, nous avons exploré l’utilisation des méthodes d’alignement de séquences pour l'extraction de connaissances sur l'utilisation de site Web (web mining). Ces méthodes sont la base du regroupement automatique d’internautes en segments, ce qui permet de découvrir des groupes de comportements similaires. De plus, nous avons également étudié comment ces groupes pouvaient servir à effectuer de la prédiction et la recommandation de pages. Ces thèmes sont particulièrement importants avec le développement très rapide du commerce en ligne qui produit un grand volume de données (big data) qu’il est impossible de traiter manuellement.

Details

Language :
English
Database :
OpenAIRE
Journal :
Web. Université de Haute Alsace-Mulhouse, 2016. English. ⟨NNT : 2016MULH0098⟩
Accession number :
edsair.od.......212..9c998ab95dfeec26c1cf9f1a86ca671c