Back to Search
Start Over
Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels
- Source :
- Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; & O'Dowd, Diane K. (2005). Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.. Journal of neurophysiology, 94(1), 491-4500. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/4cf5h7vw
- Publication Year :
- 2005
- Publisher :
- eScholarship, University of California, 2005.
-
Abstract
- Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.
- Subjects :
- physiology [Calcium Channels]
metabolism [Fura-2]
pharmacology [Salicylates]
Time Factors
cytology [Mushroom Bodies]
methods [Diagnostic Imaging]
drug effects
physiology [Neurons]
pharmacology [Enzyme Inhibitors]
pharmacology [Nicotinic Antagonists]
pharmacology [Picrotoxin]
pharmacology [Caffeine]
methods [Patch-Clamp Techniques]
pharmacology [Thapsigargin]
pharmacology [Tetrodotoxin]
Animals
metabolism [Calcium]
Drug Interactions
pharmacology [Cobalt]
analogs & derivatives
pharmacology [Valine]
Cells, Cultured
Analysis of Variance
pharmacology [Phenols]
pharmacology [Nicotine]
fungi
pharmacology [Excitatory Amino Acid Antagonists]
Age Factors
Pupa
Life Sciences
Dose-Response Relationship, Radiation
pharmacology [Iodine]
pharmacology [Spider Venoms]
Drug Combinations
methods [Electric Stimulation]
pharmacology [gamma-Aminobutyric Acid]
pharmacology [Chlorine]
metabolism [Green Fluorescent Proteins]
pharmacology [6-Cyano-7-nitroquinoxaline-2,3-dione]
pharmacology [Curare]
Drosophila
pharmacology [GABA Antagonists]
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; & O'Dowd, Diane K. (2005). Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.. Journal of neurophysiology, 94(1), 491-4500. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/4cf5h7vw
- Accession number :
- edsair.od.......325..76281479e87d0a24c1a452f2fa083750