Back to Search Start Over

Υλοποίηση σε FPGA του περιγραφέα HOG για ανίχνευση ανθρώπων σε εικόνες και βίντεο

Authors :
Ζυγούρης, Ευάγγελος
Antonopoulos, Georgios
Οικονόμου, Γεώργιος
Μπακάλης, Δημήτριος
Publication Year :
2013

Abstract

Η παρούσα ειδική ερευνητική εργασία εκπονήθηκε στα πλαίσια του Διατμηματικού Προγράμματος Μεταπτυχιακών Σπουδών στην “Ηλεκτρονική και Επεξεργασία της Πληροφορίας”, στο Τμήμα Φυσικής του Πανεπιστημίου Πατρών. Αντικείμενο της παρούσας εργασίας είναι η “Υλοποίηση σε FPGA του περιγραφέα HOG για ανίχνευση ανθρώπων σε εικόνες και βίντεο”. Το πρώτο κεφάλαιο αποτελεί μια εισαγωγή στις βασικότερες έννοιες που χρησιμοποιούνται στην παρούσα εργασία. Περιγράφεται επίσης η αναπτυξιακή πλακέτα που χρησιμοποιήθηκε καθώς και τα επί μέρους στοιχεία που τη συνθέτουν. Τέλος γίνεται μια συνοπτική αναφορά σε εργασίες με παρόμοιο αντικείμενο, οι οποίες με επηρέασαν στο σχεδιασμό και την υλοποίηση του συστήματός μου. Στο δεύτερο κεφάλαιο αναλύεται ο περιγραφέας Ιστογραμμάτων Προσανατολισμού της Βάθμωσης ή όπως είναι ευρύτερα γνωστός Histograms of Oriented Gradient Descriptor. Παρουσιάζονται τα βήματα όπως περιγράφονται στην εργασία των Dalal&Triggs[4] και οι βέλτιστες τιμές των παραμέτρων του περιγραφέα. Στο τρίτο κεφάλαιο ακολουθώντας τα βήματα του δευτέρου κεφαλαίου, παρουσιάζεται η διαδικασία υλοποίησης του περιγραφέα στο Matlab. Εκτός της υλοποίησης έγινε και μια προεργασία για τη μεταφορά του σε γλώσσα περιγραφής υλικού. Η προεργασία αυτή περιλαμβάνει απλοποιήσεις και τροποποιήσεις με σκοπό να μειωθεί το υπολογιστικό κόστος. Τέλος παρουσιάζονται τα αποτελέσματα δοκιμών της απόδοσης του περιγραφέα για τις διάφορες απλοποιήσεις. Στο τέταρτο κεφάλαιο γίνεται μια μικρή αναφορά στους ταξινομητές. Περιγράφονται οι ταξινομητές που δοκιμάστηκαν στην παρούσα εργασία ως προς συγκεκριμένα χαρακτηριστικά τους καθώς και την υπολογιστική τους πολυπλοκότητα για την συγκεκριμένη εφαρμογή. Το πέμπτο και τελευταίο κεφάλαιο περιλαμβάνει την περιγραφή της υλοποίησης σε VHDL. Αναλύονται τα επί μέρους κυκλώματα και όπου κρίθηκε αναγκαίο χρησιμοποιήθηκαν σχήματα ή πίνακες. Σε κάποιες περιπτώσεις δίνονται και οι κυματομορφές των κυκλωμάτων. This thesis took place within the frame work of the Interdeparmental Master’s Program in “Electronics and Information Processing”, at the Department of Physics of University of Patras. The objective of this work is the implementation in FPGA of the HOG descriptor for the detection of people, images and videos. The first chapter is an introduction about the basic concepts, which are used across the manuscript. (Additional descriptions concern the development board which was used as well as the individual parts that compose it.) In the end, there is a brief reference to past projects focusing on similar objectives, which influenced the design and the implementation of my system. The second chapter concerns the presentation and discussion of the Histograms of Oriented Gradient descriptor. The steps of the procedure and the best parameter values of the descriptor are presented in a similar way as they are described in the paper of Dalal and Triggs. In the third chapter, following the steps of the previous one, the focus shifts to the descriptor’s implementation procedure in Matlab. Besides the implementation, there is a preparation for the transference of the descriptor in a Hardware Description Language. This preparation includes simplifications and modifications aiming at the reduction of the computational cost. Finally, we see the tests’ results of the descriptor’s performance concerning the various simplifications. The fourth chapter is a partial reference to the classifiers. The description is about the classifiers that were used in the present work with respect to their features and their computational complexity of this particular application. The fifth and final chapter refers to the description of the implementation in VHDL. There is an analysis of the partial circuits and, when necessary, shapes and tables were used. In some cases, the waveforms of the circuits are being presented.

Details

Language :
Greek, Modern (1453-), Greek
Database :
OpenAIRE
Accession number :
edsair.od......1047..903c3c335c120ef47872a8717732c301