Back to Search
Start Over
Monolayers and three-dimensional cultures to investigate metabolic reprogramming in breast and bladder cancer
- Publication Year :
- 2022
- Publisher :
- Università degli Studi di Milano-Bicocca, 2022.
-
Abstract
- La riprogrammazione metabolica è stata osservata in molti tipi di cancro ed è considerata un tratto distintivi di questa malattia eterogenea multifattoriale. Comprendere i meccanismi che portano al riarrangiamento metabolico e come queste attività promuovono l’attivazione di proprietà maligne nel cancro può aiutare a sfruttare le alterazioni metaboliche a beneficio terapeutico. Nei tumori solidi le cellule tumorali interagiscono con il complesso habitat del microambiente tumorale (TME) che può modulare il metabolismo delle cellule tumorali e la loro sensibilità o resistenza al trattamento farmacologico. I modelli tridimensionali (3D), come gli sferoidi, gli organoidi e gli organ-on-chip stanno cambiando il paradigma della ricerca preclinica sul cancro poiché rappresentano più fedelmente la complessità dell’ambiente e dell’architettura tissutale che si trova nei tumori in vivo rispetto alle colture cellulari bidimensionali (2D). Perciò l’utilizzo dei modelli 3D potrebbe migliorare la robustezza e l’affidabilità dei dati della ricerca preclinica riducendo la necessità di test sugli animali e favorendone la traslazione alla pratica clinica. In questa tesi, abbiamo eseguito una caratterizzazione metabolica di linee cellulari di carcinoma mammario luminale (MCF7) e triplo negativo (SUM159PT e MDAMB231) e abbiamo confrontato la loro diversa risposta alle perturbazioni metaboliche attraverso la valutazione della proliferazione cellulare (in 2D) e della capacità di formare sferoidi. I principali risultati di questo capitolo suggeriscono che le deprivazioni nutrizionali e i trattamenti farmacologici contro il metabolismo energetico hanno un impatto maggiore sulla proliferazione delle cellule che crescono in 2D rispetto alla formazione di sferoidi (3D). Inoltre, la perturbazione del metabolismo del glucosio ha mostrato l'effetto più forte sul processo di formazione degli sferoidi, riducendo gravemente la vitalità e la morfologia degli sferoidi, specialmente sulla linea cellulare altamente glicolitica MDAMB231. Inoltre, abbiamo sviluppato un flusso di lavoro affidabile e riproducibile per l'analisi metabolica di colture tridimensionali mediante la tecnologia Seahorse XFe96, un analizzatore di flusso extracellulare che misura simultaneamente il tasso di consumo di ossigeno (OCR) e il tasso di acidificazione extracellulare (ECAR) delle cellule viventi. L'ottimizzazione del protocollo di formazione degli sferoidi ha consentito di produrre sferoidi di forma altamente regolare e di dimensioni omogenee, riducendo drasticamente la variabilità nelle misurazioni di OCR ed ECAR tra i replicati tecnici sperimentali, sia in condizioni basali che di trattamento farmacologico. La normalizzazione per cellula ci ha permesso di confrontare direttamente questi parametri metabolici tra sferoidi di diverse dimensioni e tra colture 2D e 3D, rivelando che le differenze metaboliche tra gli sferoidi studiati sono per lo più legate alla linea cellulare piuttosto che alla dimensione dello sferoide. Infine, abbiamo caratterizzato il metabolismo energetico e le proprietà cellulari associate alla diffusione e alla progressione del tumore nelle linee cellulari tumorali di Grado 2 derivanti da vescica umana, RT112 e 5637. Nonostante le due linee cellulari mostrassero proprietà metaboliche e invasive distinte, entrambe presentavano una respirazione considerevole e il trattamento con metformina ha causato una down-regolazione globale della proliferazione, della migrazione e della capacità di formare sferoidi. Complessivamente i risultati di questa tesi aprono nuove prospettive di ricerca per l'identificazione di nuovi potenziali bersagli terapeutici contro il cancro, avvicinandosi alla comprensione della plasticità metabolica del cancro che può essere sfruttata per sviluppare strategie terapeutiche efficienti per il trattamento di pazienti oncologici. Metabolic reprogramming has been observed in many types of cancer, and it is considered a hallmark of this heterogeneous multifactorial disease. Understanding the mechanisms leading to metabolic rewiring and how these activities promote the activation of cancer's malignant properties can help exploit metabolic alterations for therapeutic benefit. In solid tumors, cancer cells interact with the complex habitat of the tumor microenvironment (TME), which can modulate cancer cells' metabolism and their sensitivity or resistance to drug treatment. Three-dimensional (3D) models, such as spheroids, organoids, and organ-on-chips, are changing the paradigm of preclinical cancer research as they more closely resemble the complex tissue environment and architecture found in tumors in vivo than bidimensional (2D) cell cultures. Therefore, 3D models could potentially improve the robustness and reliability of preclinical research data, reducing the need for animal testing and favoring their transition to clinical practice. In this thesis, we performed a metabolic characterization of luminal (MCF7) and triple-negative (MDAMB231 and SUM159PT) breast cancer cell lines and compared their different response to metabolic perturbations through the evaluation of cell proliferation (in 2D) and spheroid formation ability. The main results of this chapter suggest that nutritional deprivations and pharmacological treatments targeting energetic metabolism have a more significant impact on the proliferation of cells growing in 2D than on spheroid formation (3D). Moreover, the perturbation of glucose metabolism by glucose deprivation and 2-deoxy-glucose treatment showed the most potent effect on the spheroid formation process, severely reducing spheroid vitality and morphology, especially on the highly glycolytic MDAMB231 cell line. Furthermore, we developed a reliable and reproducible workflow for the metabolic analysis of three-dimensional cultures by Seahorse XFe96 technology, an extracellular flux analyzer that simultaneously measures the Oxygen Consumption Rate (OCR) and the Extracellular Acidification Rate (ECAR) of living cells. The optimization of the spheroid formation protocol enabled the production of spheroids highly regular in shape and homogenous in size, dramatically reducing variability in the OCR and ECAR measurements among the experimental technical replicates, both under basal and drug treatment conditions. Furthermore, the normalization on a per-cell basis allowed us to directly compare these metabolic parameters between spheroids of different sizes and between 2D and 3D cultures, revealing that metabolic differences among the studied spheroids are mostly related to the cell line rather than to the size of the spheroid. Finally, we characterized energy metabolism and cellular properties associated with spreading and tumor progression of RT112 and 5637, two cell lines from Grade 2 human bladder cancer. Although the two cell lines displayed distinct metabolic and invasive properties, both exhibited sizable respiration, and the metformin treatment gave a global downregulation of the proliferation, migration, and the ability to form spheroids. Altogether, the findings of this thesis open new research perspectives for identifying novel potential therapeutic targets against cancer, getting closer toward the understanding of cancer metabolic plasticity that can be exploited for developing efficient therapeutic strategies for the treatment of oncologic patients.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od......1299..732991bce6447cb9c9e3bd410beceb70