Back to Search
Start Over
Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return
- Source :
- Electronic Thesis and Dissertation Repository
- Publication Year :
- 2020
- Publisher :
- Scholarship@Western, 2020.
-
Abstract
- Geological processes, including impact cratering, are fundamental throughout rocky bodies in the solar system. Studies of terrestrial impact structures, like the Ries impact structure, Germany, have informed on impact cratering processes – e.g., early hot, hydrous degassing, autometamorphism, and recrystallization/devitrification of impact glass – and products – e.g., impact melt rocks and breccias comprised of clay minerals. Yet, clay minerals of authigenic impact origin remain understudied and their formation processes poorly-understood. This thesis details the characterization of impact-generated clay minerals at Ries, showing that compositionally diverse, abundant Al/Fe/Mg smectite clays formed through these processes in thin melt-bearing breccia deposits of the ejecta, as well as at depth. The inherent complexity of smectites – their formation, type, structure, and composition – makes their provenance difficult to discern; these factors may explain why impact-generated and altered materials, which comprise an appreciable volume and extent of Mars’ ancient Noachian crust, are not generally recognized as a source of the enigmatic clays that are ubiquitous in those regions. Clay minerals can provide a defining window into a planet’s geologic and climatic past as an indicator of water availability and geochemistry; the presence of clay minerals on Mars has been used to support the hypothesis of climatically “warm, wet” ancient conditions. Yet, climate modeling of Early Mars suggests that the likely nature of the climate was not conducive to long-term aqueous activity. We suggest that the omission of impact-generated materials in current models of Mars clay mineral formation leaves a fundamental gap in our understanding of Noachian crustal materials – materials that were continually recycled and completely transformed on a global scale over millennia on Mars. The opportunity to investigate clay-bearing impactites and strata-bound clay minerals will be presented to the upcoming NASA Mars 2020 and ESA ExoMars rovers; this thesis offers caution in assigning clay mineral provenance until samples are returned to Earth from these missions. We furthermore suggest a methodological approach to augment current rover-based exploration frameworks to characterize potential impact-origin. Discerning clay species and provenance – and acknowledging the implications of that provenance – is central to understanding the geologic context of Mars, and thus its past climatic conditions and habitability potential.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Electronic Thesis and Dissertation Repository
- Accession number :
- edsair.od......1548..e9e12f236a4f051052336768b11932c7