Back to Search Start Over

Natančnost določanja kalečih semen s pomočjo obdelave slik in nevronskih mrež

Authors :
Škrubej, Uroš
Rozman, Črtomir
Stajnko, Denis
Source :
Agricultura, vol. 12, no. 1/2, pp. 19-24, 2015.
Publication Year :
2017
Publisher :
Fakulteta za kmetijstvo in biosistemske vede Univerze v Mariboru, Sciendo, 2017.

Abstract

This paper describes a computer vision system based on image processing and machine learning techniques which was implemented for automatic assessment of the tomato seed germination rate. The entire system was built using open source applications Image J, Weka and their public Java classes and linked by our specially developed code. After object detection, we applied artificial neural networks (ANN), which was able to correctly classify 95.44% of germinated seeds of tomato (Solanum lycopersicum L.). Članek opisuje sistem računalniškega vida, ki temelji na tehnikah obdelave slik in strojnega učenja, ki je bil izdelan za avtomatsko oceno stopnje kaljenja semen paradižnika. Celoten sistem je bil zgrajen s pomočjo odprtokodnih aplikacij ImageJ, Weka in njihovih javno dostopnih javanskih kod, ki smo jih povezali v lastno originalno razvito kodo. Po odkrivanju predmetov na RGB slikah, smo uporabili umetne nevronske mreže (ANN), ki so bile sposobne pravilno razvrstiti 95,44% nakaljenih semen paradižnika (Solanum lycopersicum L.).

Details

Language :
English
ISSN :
15808432
Database :
OpenAIRE
Journal :
Agricultura, vol. 12, no. 1/2, pp. 19-24, 2015.
Accession number :
edsair.od......1857..1a23f2c71dc5c931300c4f6248a3f443