Back to Search
Start Over
Comparison of Approaches to Synthetic Data Generation
- Publication Year :
- 2017
- Publisher :
- Vysoká škola ekonomická v Praze, 2017.
-
Abstract
- The diploma thesis deals with synthetic data, selected approaches to their generation together with a practical task of data generation. The goal of the thesis is to describe the selected approaches to data generation, capture their key advantages and disadvantages and compare the individual approaches to each other. The practical part of the thesis describes generation of synthetic data for teaching knowledge discovery using databases. The thesis includes a basic description of synthetic data and thoroughly explains the process of their generation. The approaches selected for further examination are random data generation, the statistical approach, data generation languages and the ReverseMiner tool. The thesis also describes the practical usage of synthetic data and the suitability of each approach for certain purposes. Within this thesis, educational data Hotel SD were created using the ReverseMiner tool. The data contain relations discoverable with SD (set-difference) GUHA-procedures.
- Subjects :
- Náhodný přístup
Synthpop
Anonymizace dat
Umělá data
Synthetic data
Approaches to synthetic data generation
Synthetic data generation process
ReverseMiner
Testování softwaru
Synthetic Data Definition Language
Statistický přístup
LISp-Miner
Generovací jazyky
Generation languages
Software testing
Mockaroo
Random approach
Přístupy ke generování umělých dat
GUHA-procedury
Education data
Proces generování umělých dat
GUHA-procedures
Statistic approach
Výuková data
Data anonymization
Subjects
Details
- Language :
- Czech
- Database :
- OpenAIRE
- Accession number :
- edsair.od......2186..fde7aa285d94eff82560c9144ff923c2