Back to Search Start Over

Automated Earthquake Detection and Local Travel Time Tomography in the South‐Central Andes (32–35°S): Implications for Regional Tectonics

Authors :
Ammirati, Jean‐baptiste
Villaseñor, Antonio
Chevrot, Sébastien
Easton, Gabriel
Lehujeur, Maximilien
Ruiz, Sergio
Flores, María Constanza
Géosciences Environnement Toulouse (GET)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Universidad de Chile = University of Chile [Santiago] (UCHILE)
Institute of Marine Sciences / Institut de Ciències del Mar [Barcelona] (ICM)
Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Université Gustave Eiffel
Centro Sismológico Nacional [Santiago]
Source :
Journal of Geophysical Research : Solid Earth, Journal of Geophysical Research : Solid Earth, 2022, 127 (4), pp.e2022JB024097. ⟨10.1029/2022JB024097⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; In the South-Central Andes, the crustal structures driving the tectonic evolution of the Andean Cordillera remain unresolved. So far, most seismological studies focused on the subduction interface, leaving crustal seismicity and its relationship with crustal deformation and Andean volcanism mostly unconstrained. However, because of their large number compared to higher magnitude events, the characterization of small-magnitude crustal earthquakes is key to identify active structures and better constrain the tectonic models. In this work, we exploit 53 months of continuously recorded, three-component waveforms from the permanent seismic network in central Chile using a deep-learning approach to improve the detection of small-magnitude earthquakes. To increase station coverage, we also use the seismic phases obtained from a previous temporary seismic deployment. We use the obtained seismicity catalog to refine tomographic models of that region, revealing a more detailed architecture of the Chilean forearc. Travel times calculated in the new 3-D velocity model allowed us to locate ∼14,000 earthquakes. Refined double-difference relocations of ∼4,900 events located beneath the West Andean Thrust suggest a large-scale, west-dipping structure which, together with the west-verging tectonic front, likely contributed to the uplift and crustal deformation during the past ∼20 Myr.

Details

Language :
English
ISSN :
21699313 and 21699356
Database :
OpenAIRE
Journal :
Journal of Geophysical Research : Solid Earth, Journal of Geophysical Research : Solid Earth, 2022, 127 (4), pp.e2022JB024097. ⟨10.1029/2022JB024097⟩
Accession number :
edsair.od......2191..284068994c6ab7dfefd1e119b108fa6f