Back to Search Start Over

Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems

Authors :
Delbos, Frédéric
Gilbert, Jean Charles
Parameter estimation and modeling in heterogeneous media (ESTIME)
Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
INRIA
Source :
[Research Report] RR-5028, INRIA. 2003
Publication Year :
2003
Publisher :
HAL CCSD, 2003.

Abstract

We consider an augmented Lagrangian algorithm for minimizing a convex quadratic function subject to linear inequality constraints. Linear optimization is an important particular instance of this problem. We show that, provided the augmentation parameter is large enough, the constraint value converges globally linearly to zero. This property is proven by establishing first a global radial Lipschitz property of the reciprocal of the dual function subgradient. It is also a consequence of the proximal interpretation of the method. No strict complementarity assumption is needed. The result is illustrated by numerical experiments and algorithmic implications are discussed.

Details

Language :
English
Database :
OpenAIRE
Journal :
[Research Report] RR-5028, INRIA. 2003
Accession number :
edsair.od......2592..0bbbf87d2a09cfd3acc36aa38d41cd66