Back to Search
Start Over
Bundling : une Technique de Réduction d'Occultation par Agrégation Visuelle et son Application à l'Étude de la Maladie d'Alzheimer
- Source :
- Informatique [cs]. Université de Toulouse (Paul Sabatier), 2017. Français. ⟨NNT : 2017TOU30307⟩
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- Dense and complex data visualizations suffer from occluded items, which hinders insight retrieval. This is especiallythe case for very large graph or trails set. To address cluttering issues, several techniques propose to visually simplifythe representation, often meeting scalability and computational speed limits. Among them, bundling techniquesprovide a visual simplification of node-link diagrams by spatially grouping similar items. This thesis strives tobridge the gap between the technical complexity of bundling techniques and the end-point user.The first aim of this thesis was to improve the understanding of graph and trail bundling techniques as a clutterreduction method for node-link diagrams of large data-set. To do so, we created a data-based taxonomy thatorganizes bundling methods on the type of data they work on. From this thorough review and based on a formaldefinition of path bundling, we propose a unified framework that describes the typical steps of bundling algorithmsin terms of high-level operations and show how existing methods classes implement these steps. In addition,we propose a description of tasks that bundling aims to address and demonstrate them through a wide set ofapplications.Although many techniques exist, handling large data-sets and selectively bundling paths based on attributes isstill a challenge. To answer the scalability and computational speed issues of bundling techniques, we propose anew technique which improves both. For this, we shift the bundling process from the image to the spectral space,thereby increasing computational limits. We address the later by proposing a streaming scheme allowing bundlingof extremely large data-sets.Finally, as an application domain, we studied how bundling can be used as an efficient visualization technique forsocietal health challenges. In the context of a national study on Alzheimer disease, we focused our research onthe analysis of the mental representation of geographical space for elderly people. We show that using bundlingto compare the cognitive maps of dement and non-dement subjects helped neuro-psychologist to formulate newhypotheses on the evolution of Alzheimer disease. These new hypotheses led us to discover a potential marker ofthe disease years before the actual diagnosi; Le big data est un challenge majeur de la visualisation ; l’augmentation du nombre de données à visualiser augmentela densité et l’occultation des graphes et il devient difficile de distinguer les éléments qui le compose. Pour résoudrece challenge, plusieurs techniques de visualisation se focalisent sur la simplification visuelle ; parmi elles, l’agréga-tion visuelle (bundling) permet l’agrégation des liens pour créer des zones de fortes densités au profit d’espacesplus clairsemés faisant ainsi émerger des structures visuelles. Cette thèse s’efforce à faire le trait d’union entre lacomplexité technique des algorithmes de bundling et les utilisateurs finaux.Dans un premier temps, nous avons formalisé l’espace de design des techniques de bundling afin d’améliorer lacompréhension des chercheurs et des utilisateurs. Notre formalisation se fonde sur une taxonomie centrée utilisateurorganisant l’ensemble des techniques d’agrégation en fonction des données d’entrée. Ensuite, à partir d’une définitionformelle du bundling, nous proposons un modèle générique décrivant l’ensemble des étapes usuelles des algorithmesde bundling et montrons comment les techniques existantes implémentent chaque étape. Enfin, à travers une analysedes tâches, nous exposons des cas d’utilisation avérés.Notre analyse de l’espace des techniques de bundling nous a montré les limites actuelles du bundling quant au trai-tement de grande quantité de données tant en terme de rapidité de calcul qu’en terme de taille des jeux de données.Ainsi, nous avons résolu ces limites en introduisant une nouvelle technique plus rapide et sans limitation de taille :FFTEB (Fast Fourier Transform Edge Bundling Technique). Notre technique déplace le processus d’agrégation del’espace pixelaire vers l’espace spectral. Enfin, grâce à un processus de transfert des données, FFTEB résout lesproblèmes de taille de jeux de données.En dernier lieu, dans le cadre d’une application à la maladie d’Alzheimer, cette thèse démontre l’efficacité destechniques de bundling comme outil d’exploration visuelle. Dans le contexte d’une étude nationale sur la maladied’Alzheimer, nous avons focalisé notre recherche sur l’analyse de la représentation mentale de l’espace géographiquechez les personnes âgées. Nous montrons que l’utilisation du bundling pour comparer les cartes mentales despopulations démentes et non-démentes a permis à des neuropsychologues de formuler de nouvelles hypothèses surl’évolution de la maladie d’Alzheimer. Ces nouvelles hypothèses nous ont permis de montrer l’émergence d’unpotentiel marqueur de la maladie près de douze ans avant que les patients ne soient diagnostiqués comme atteintsde cette maladie.
Details
- Language :
- French
- Database :
- OpenAIRE
- Journal :
- Informatique [cs]. Université de Toulouse (Paul Sabatier), 2017. Français. ⟨NNT : 2017TOU30307⟩
- Accession number :
- edsair.od......2592..65f31f22d7a790765bb95d96ee017bda