Back to Search Start Over

Domain wall saddle point morphology in ferroelectric triglycine sulfate

Authors :
McCluskey, C. J.
Kumar, A.
Gruverman, A.
Luk'yanchuk, I.
Gregg, J. M.
Source :
McCluskey, C J, Kumar, A, Gruverman, A, Luk'yanchuk, I & Gregg, J M 2023, ' Domain wall saddle point morphology in ferroelectric triglycine sulfate ', Applied Physics Letters, vol. 122, no. 22, 222902 . https://doi.org/10.1063/5.0152518
Publication Year :
2023

Abstract

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of interlocking bifurcated domains. Conducting atomic force microscopy, performed close to the saddle points, showed no evidence for highly localized conducting domain wall sections, across which a divergence in polarization might be implied; this supports the notion that localized dipolar rotation occurs to minimize any potential polar discontinuity. Overall, our study, therefore, confirms that mutual domain bifurcation and suspected local dipolar rotation are not unique to lead germanate and instead may be widely present in other uniaxial ferroelectrics.

Details

Language :
English
Database :
OpenAIRE
Journal :
McCluskey, C J, Kumar, A, Gruverman, A, Luk'yanchuk, I & Gregg, J M 2023, ' Domain wall saddle point morphology in ferroelectric triglycine sulfate ', Applied Physics Letters, vol. 122, no. 22, 222902 . https://doi.org/10.1063/5.0152518
Accession number :
edsair.od......2607..9e121a89fb33a33140c7ee04f96aaf19
Full Text :
https://doi.org/10.1063/5.0152518