Back to Search Start Over

β -Variational AutoEncoder and Gaussian Mixture Model for Fault Analysis Decision Flow in Semiconductor Industry 4.0

Authors :
Ezukwoke, Kenneth
Hoayek, Anis
Batton-Hubert, Mireille
Boucher, Xavier
Gounet, Pascal
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom [Paris] (IMT)
Département Génie mathématique et industriel (FAYOL-ENSMSE)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol
Institut Henri Fayol (FAYOL-ENSMSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Département Génie de l’environnement et des organisations (FAYOL-ENSMSE)
Institut Henri Fayol-Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)
STMicroelectronics
Source :
ENBIS 2021 Spring Meeting, ENBIS 2021 Spring Meeting, May 2021, Online, France
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Poster; International audience; Failure analysis (FA) is key to a reliable semiconductor industry. Fault analysis, physical analysis, sample preparation and package construction analysis are arguably the most used analysis activity for determining the root-cause of a failure in semiconductor industry 4.0. As a result, intelligent automation of this analysis decision process using artificial intelligence is the objective of the Industry 4.0 consortium. The research presents natural language processing (NLP) techniques to find a coherent representation of the expert decisions during fault analysis using β-variational autoencoder (β-VAE) for space disentanglement or class discrimination and Gaussian Mixture Model for clustering of the latent space for class identification.

Details

Language :
English
Database :
OpenAIRE
Journal :
ENBIS 2021 Spring Meeting, ENBIS 2021 Spring Meeting, May 2021, Online, France
Accession number :
edsair.od......2885..1761c951fba0ca8893a844292a0ff4f0