Back to Search Start Over

A Distributed Algorithm for Large-Scale Graph Clustering

Authors :
Inoubli, Wissem
Aridhi, Sabeur
Mezni, Haithem
Mondher, Maddouri
Nguifo, Engelbert
Université Tunis El Manar (UTM)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Computational Algorithms for Protein Structures and Interactions (CAPSID)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Université de Jendouba (UJ)
Unité de Recherche en Programmation Algorithmique et Heuristique (URPAH)
Faculté des Sciences de Tunis
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Graph clustering is one of the key techniques to understand the structures present in the graph data. In addition to cluster detection, the identification of hubs and outliers is also a critical task as it plays an important role in the understanding of graph data. Recently, several graph clustering algorithms have been proposed and used in many application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on structural clustering. Yet, these algorithms have been evaluated on small graph database. In this paper, we propose DSCAN, a novel distributed structural graph clustering algorithm. We present an implementation of DSCAN on top of BLADYG, a distributed graph processing framework. We experimentally show that DSCAN significantly outperforms existing clustering algorithm in terms of scalability and performance in the case of large graphs.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......2885..2556a45c931bbbd920ca74e496cd188d