Back to Search
Start Over
Neural network and state-space models for studying relationships among soil properties
- Source :
- Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA-Alice), Empresa Brasileira de Pesquisa Agropecuária (Embrapa), instacron:EMBRAPA
- Publication Year :
- 2006
-
Abstract
- O estudo da relação entre as propriedades do solo é de grande importância na área agronômica objetivando um manejo racional dos recursos naturais do meio ambiente e um aumento na produtividade agrícola. Tradicionalmente este estudo tem sido realizado usando modelos de regressão estática os quais não levam em consideração a estrutura espacial envolvida. Este trabalho teve o objetivo de avaliar a relação entre uma variável de determinação mais cara e demorada (por exemplo, nitrogênio total do solo) e outras de mais barata e rápida determinação (p.e., carbono orgânico do solo, pH, etc.). Duas importantes classes de modelos (espaço de estados linear e redes neurais) são usadas para predição e comparadas aos modelos de regressão uni- e multivariados aqui usados como referência. Para tal, em uma área experimental cultivada com aveia, situada em Jaguariúna, SP (22º41? S e 47º00? W), amostras de um solo classificado como Latossolo foram coletadas na camada arável ao longo de uma transeção espacial de 194 m, eqüidistantes de 2 m. Os modelos de rede neural recorrente e de espaço de estados padrão tiveram uma melhor performance preditiva da variável nitrogênio total do solo quando comparados aos modelos de regressão padrão. Entre os modelos de regressão padrão o Autoregressivo Vetorial teve um melhor desempenho preditivo da variável nitrogênio total do solo.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA-Alice), Empresa Brasileira de Pesquisa Agropecuária (Embrapa), instacron:EMBRAPA
- Accession number :
- edsair.od......3056..f66455611b69f6ffda5d117bcce31f56