Back to Search Start Over

Intercomparison of cloud condensation nuclei and hygroscopic fraction the LACIS Experiment in November (LExNo)

Authors :
Snider, J.R.
Wex, H.
Dusek, U.
Frank, G.P.
Kiendler-Scharr, A.
Mentel, T. F.
Petters, M.D.
Pöschl, U.
Rose, D.
Kristensson, A.
Stratmann, F.
Henning, T.
Henning, S.
Kiselev, A.
Bilde, M.
Burkhart, M.
Source :
Journal of Geophysical Research 115, D11205 (2010). doi:10.1029/2009JD012618
Publication Year :
2010
Publisher :
Union, 2010.

Abstract

Four cloud condensation nuclei (CCN) instruments were used to sample size-selected particles prepared at the Leipzig Aerosol Cloud Interaction Simulator facility. Included were two Wyoming static diffusion CCN instruments, the continuous flow instrument built by Droplet Measurement Technologies, and the continuous flow Leipzig instrument. The aerosols were composed of ammonium sulfate, levoglucosan, levoglucosan and soot, and ammonium hydrogen sulfate and soot. Comparisons are made among critical supersaturation values from the CCN instruments and derived from measurements made with a humidified tandem differential mobility system. The comparison is quite encouraging: with few exceptions the reported critical supersaturations agree within known experimental uncertainty limits. Also reported are CCN- and hygroscopicity-based estimates of the soot particles' solute fraction. Relative differences between these are as large as 40%, but an error analysis demonstrates that agreement within experimental uncertainty is achieved. We also analyze data from the Droplet Measurement Technologies and the two Wyoming static diffusion instruments for evidence of size distribution broadening and investigate levoglucosan particle growth kinetics in the Wyoming CCN instrument.

Subjects

Subjects :
ddc:550

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Geophysical Research 115, D11205 (2010). doi:10.1029/2009JD012618
Accession number :
edsair.od......3364..b459ef0220863cc3075d5448d5c371be