Back to Search Start Over

Quantile Regression Analysis of Censored Data with Selection An Application to Willingness-to-Pay Data

Authors :
Champonnois, Victor
Chanel, Olivier
Protopopescu, Costin
Aix-Marseille Sciences Economiques (AMSE)
École des hautes études en sciences sociales (EHESS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
ANR-17-EURE-0020,AMSE (EUR),Aix-Marseille School of Economics(2017)
ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011)
ANR-11-LABX-0061,OTMed,Objectif Terre : Bassin Méditerranéen(2011)
ANR-08-RISK-0007,RISKEMOTION,Décision en présence d'incertitude et d'émotions face à des risques de catastrophes naturelles.(2008)
ANR-16-CE03-0005,GREEN-Econ,Vers une économie plus verte : politiques environnementales et adaptation sociétale(2016)
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Recurring statistical issues such as censoring, selection and heteroskedasticity often impact the analysis of observational data. We investigate the potential advantages of models based on quantile regression (QR) for addressing these issues, with a particular focus on willingness to pay-type data. We gather analytical arguments showing how QR can tackle these issues. We show by means of a Monte Carlo experiment how censored QR (CQR)-based methods perform compared to standard models. We empirically contrast four models on flood risk data. Our findings confirm that selection-censored models based on QR are useful for simultaneously tackling issues often present in observational data.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......3430..10bac8600798ddfbc48b72bd29e1b393