Back to Search Start Over

BV EXPONENTIAL STABILITY FOR NETWORKS OF SCALAR CONSERVATION LAWS USINGLINEAR OR SATURATED CONTROLS

Authors :
Dus, Mathias
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

In this paper, we investigate the BV exponential stability of general networks of scalar conservation laws with positive velocities 4 and under dissipative boundary conditions. The paper is divided in two parts, the first one focusing on linear controls while the last one deals 5 with saturated laws. For the linear case, the global exponential BV stability is proven. For the saturated case, we argue that we cannot expect 6 to have a basin of attraction larger than the region of linearity in a BV context. We rather prove an L ∞ local stability result. An explicit 7 estimate of the basin of attraction is given. The Lyapunov functional is inspired from Glimm's seminal work [13] reconsidered in [7]. 8

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od......4074..48dd2184fcb7102d711c3b685f1a1cbf