Back to Search
Start Over
Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in
- Source :
- Molecules
- Publication Year :
- 2018
-
Abstract
- Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.
- Subjects :
- Models, Molecular
isobologram assay
dynamic residue network analysis
Trypanosoma brucei brucei
Molecular Conformation
Quantitative Structure-Activity Relationship
Permeability
Article
pteridine reductase 1
Parasitic Sensitivity Tests
parasitic diseases
Drug Discovery
Computer Simulation
Amino Acid Sequence
Enzyme Inhibitors
PTR1
anti-folates
binding free energy
Dose-Response Relationship, Drug
Molecular Structure
Hydrogen Bonding
Human African Trypanosomiasis
DHFR
molecular dynamics
Tetrahydrofolate Dehydrogenase
Blood-Brain Barrier
anti-trypanosomal agents
Oxidoreductases
Subjects
Details
- ISSN :
- 14203049
- Volume :
- 24
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Molecules (Basel, Switzerland)
- Accession number :
- edsair.pmid..........017f84b1c1f25f482c15d8aa9ab61167