Back to Search
Start Over
Certain Hermite-Hadamard type inequalities via generalized
- Source :
- Journal of Inequalities and Applications
- Publication Year :
- 2016
-
Abstract
- Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(k,s)$\end{document}(k,s)-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.
- Subjects :
- Hermite-Hadamard inequality
26D15
Research
26A51
generalized k-fractional integral
26A33
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(k, s)$\end{document}(k,s)-Riemann-Liouville fractional integral
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(k, s)$\end{document}(k,s)-fractional integral
Subjects
Details
- ISSN :
- 10255834
- Volume :
- 2017
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal of inequalities and applications
- Accession number :
- edsair.pmid..........3be00fcf00cf5d2cf9c85647cecdf55b