Back to Search Start Over

1,6-α-L-Fucosidases from Bifidobacterium longum subsp. infantis ATCC 15697 Involved in the Degradation of Core-fucosylated N -Glycan

Authors :
Ashida, Hisashi
Fujimoto, Taku
Kurihara, Shin
Nakamura, Masayuki
Komeno, Masahiro
Huang, Yibo
Katayama, Takane
Kinoshita, Takashi
Takegawa, Kaoru
Source :
Journal of Applied Glycoscience
Publication Year :
2020
Publisher :
The Japanese Society of Applied Glycoscience, 2020.

Abstract

Bifidobacterium longum subsp. infantis ATCC 15697 possesses five α-L-fucosidases, which have been previously characterized toward fucosylated human milk oligosaccharides containing α1,2/3/4-linked fucose [Sela et al.: Appl. Environ. Microbiol., 78, 795-803 (2012)]. In this study, two glycoside hydrolase family 29 α-L-fucosidases out of five (Blon_0426 and Blon_0248) were found to be 1,6-α-L-fucosidases acting on core α1,6-fucose on the N-glycan of glycoproteins. These enzymes readily hydrolyzed p-nitrophenyl-α-L-fucoside and Fucα1-6GlcNAc, but hardly hydrolyzed Fucα1-6(GlcNAcβ1-4)GlcNAc, suggesting that they de-fucosylate Fucα1-6GlcNAcβ1-Asn-peptides/proteins generated by the action of endo-β- N-acetylglucosaminidase. We demonstrated that Blon_0426 can de-fucosylate Fucα1-6GlcNAc-IgG prepared from Rituximab using Endo-CoM from Cordyceps militaris. To generate homogenous non-fucosylated N-glycan-containing IgG with high antibody-dependent cellular cytotoxicity (ADCC) activity, the resulting GlcNAc-IgG has a potential to be a good acceptor substrate for the glycosynthase mutant of Endo-M from Mucor hiemalis. Collectively, our results strongly suggest that Blon_0426 and Blon_0248 are useful for glycoprotein glycan remodeling.

Details

Language :
English
ISSN :
18807291 and 13447882
Volume :
67
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Applied Glycoscience
Accession number :
edsair.pmid..........61bef449eb4c037da936d078a9b7b21e