Back to Search Start Over

Somatostatin receptor-mediated signaling in smooth muscle. Activation of phospholipase C-beta3 by Gbetagamma and inhibition of adenylyl cyclase by Galphai1 and Galphao

Authors :
K S, Murthy
D H, Coy
G M, Makhlouf
Source :
The Journal of biological chemistry. 271(38)
Publication Year :
1996

Abstract

In COS-7 cells, all five cloned somatostatin receptors are coupled via inhibitory G proteins to activation of an unidentified phospholipase C-beta (PLC-beta) isozyme and inhibition of adenylyl cyclase. In the present study, intestinal smooth muscle cells (SMC) that express only one receptor type, sstr3, and possess a full complement of G proteins and PLC-beta isozymes were used to identify the PLC-beta isozyme and the G proteins coupled to it and to adenylyl cyclase. Somatostatin-14 bound with high affinity to intestinal SMC; stimulated D-myo-inositol-1,4,5-trisphosphate (IP3) formation, Ca2+ release, and contraction; and inhibited forskolin-stimulated cAMP formation in a pertussis toxin-sensitive fashion. Somatostatin also stimulated phosphoinositide hydrolysis in plasma membranes. Only those somatostatin analogs that shared a high affinity for sstr3 receptors elicited muscle contraction. IP3 formation, Ca2+ release, and contraction in permeabilized SMC and phosphoinositide hydrolysis in plasma membranes were inhibited (approximately 80%) by pretreatment with antibodies to PLC-beta3 but not other PLC-beta isozymes, and by antibodies to Gbeta but not Galpha. Inhibition of cAMP formation was partially blocked by antibody to Galphai1 or Galphao and additively blocked by a combination of both antibodies. Somatostatin-stimulated [35S]GTPgammaS-Galpha complexes in plasma membranes were bound selectively by Galphai1 and Galphao antibodies. We conclude that in smooth muscle sstr3 is coupled to Gi1 and Go; the alpha subunits of both G proteins mediate inhibition of adenylyl cyclase, while the betagamma subunits mediate activation of PLC-beta3.

Details

ISSN :
00219258
Volume :
271
Issue :
38
Database :
OpenAIRE
Journal :
The Journal of biological chemistry
Accession number :
edsair.pmid..........7dceed38d43c0dbf7ec0ca6804cda63f