Back to Search Start Over

New definitions of human lymphoid and follicular cell entities in lymphatic tissue by machine learning

Authors :
Patrick, Wagner
Nils, Strodthoff
Patrick, Wurzel
Arturo, Marban
Sonja, Scharf
Hendrik, Schäfer
Philipp, Seegerer
Andreas, Loth
Sylvia, Hartmann
Frederick, Klauschen
Klaus-Robert, Müller
Wojciech, Samek
Martin-Leo, Hansmann
Source :
Scientific reports. 12(1)
Publication Year :
2022

Abstract

Histological sections of the lymphatic system are usually the basis of static (2D) morphological investigations. Here, we performed a dynamic (4D) analysis of human reactive lymphoid tissue using confocal fluorescent laser microscopy in combination with machine learning. Based on tracks for T-cells (CD3), B-cells (CD20), follicular T-helper cells (PD1) and optical flow of follicular dendritic cells (CD35), we put forward the first quantitative analysis of movement-related and morphological parameters within human lymphoid tissue. We identified correlations of follicular dendritic cell movement and the behavior of lymphocytes in the microenvironment. In addition, we investigated the value of movement and/or morphological parameters for a precise definition of cell types (CD clusters). CD-clusters could be determined based on movement and/or morphology. Differentiating between CD3- and CD20 positive cells is most challenging and long term-movement characteristics are indispensable. We propose morphological and movement-related prototypes of cell entities applying machine learning models. Finally, we define beyond CD clusters new subgroups within lymphocyte entities based on long term movement characteristics. In conclusion, we showed that the combination of 4D imaging and machine learning is able to define characteristics of lymphocytes not visible in 2D histology.

Details

ISSN :
20452322
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.pmid..........8efb81fb2a3c9bbbceab565295149bcd