Back to Search Start Over

Novel risk models for early detection and screening of ovarian cancer

Authors :
Matthew R, Russell
Alfonsina, D'Amato
Ciaren, Graham
Emma J, Crosbie
Aleksandra, Gentry-Maharaj
Andy, Ryan
Jatinderpal K, Kalsi
Evangelia-Ourania, Fourkala
Caroline, Dive
Michael, Walker
Anthony D, Whetton
Usha, Menon
Ian, Jacobs
Robert L J, Graham
Source :
Oncotarget
Publication Year :
2016

Abstract

Purpose Ovarian cancer (OC) is the most lethal gynaecological cancer. Early detection is required to improve patient survival. Risk estimation models were constructed for Type I (Model I) and Type II (Model II) OC from analysis of Protein Z, Fibronectin, C-reactive protein and CA125 levels in prospectively collected samples from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Results Model I identifies cancers earlier than CA125 alone, with a potential lead time of 3-4 years. Model II detects a number of high grade serous cancers at an earlier stage (Stage I/II) than CA125 alone, with a potential lead time of 2-3 years and assigns high risk to patients that the ROCA Algorithm classified as normal. Materials and Methods This nested case control study included 418 individual serum samples serially collected from 49 OC cases and 31 controls up to six years pre-diagnosis. Discriminatory logit models were built combining the ELISA results for candidate proteins with CA125 levels. Conclusions These models have encouraging sensitivities for detecting pre-clinical ovarian cancer, demonstrating improved sensitivity compared to CA125 alone. In addition we demonstrate how the models improve on ROCA for some cases and outline their potential future use as clinical tools.

Details

ISSN :
19492553
Volume :
8
Issue :
1
Database :
OpenAIRE
Journal :
Oncotarget
Accession number :
edsair.pmid..........966b93776c52385c30234fccd24d9f45