Back to Search
Start Over
DNA mismatch repair controls the host innate response and cell fate after influenza virus infection
- Source :
- Nature microbiology
- Publication Year :
- 2019
-
Abstract
- Despite the cytopathic nature of influenza A virus (IAV) replication, we recently reported that a subset of lung epithelial club cells is able to intrinsically clear the virus and survive infection. However, the mechanisms that drive cell survival during a normally lytic infection remained unclear. Using a loss-of-function screening approach, we discovered that the DNA mismatch repair (MMR) pathway is essential for club cell survival of IAV infection. Repair of virally induced oxidative damage by the DNA MMR pathway not only allowed cell survival of infection, but also facilitated host gene transcription, including the expression of antiviral and stress response genes. Enhanced viral suppression of the DNA MMR pathway prevented club cell survival and increased the severity of viral disease in vivo. Altogether, these results identify previously unappreciated roles for DNA MMR as a central modulator of cellular fate and a contributor to the innate antiviral response, which together control influenza viral disease severity.
- Subjects :
- DNA mismatch repair
oxidative damage
non-lytic clearance
Virus Replication
club cell
Article
cellular survival
Immunity, Innate
Cell Line
Madin Darby Canine Kidney Cells
Disease Models, Animal
Mice
Oxidative Stress
Dogs
Gene Expression Regulation
Influenza A virus
A549 Cells
Influenza, Human
Animals
Humans
siRNA screening
Gene Regulatory Networks
Subjects
Details
- Language :
- English
- ISSN :
- 20585276
- Volume :
- 4
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Nature microbiology
- Accession number :
- edsair.pmid..........a5cb47d67b3a886dbf6f8779bff379c4