Back to Search Start Over

The relevance of gene flow in metapopulation dynamics of an oceanic island endemic, Olea europaea subsp. guanchica

Authors :
Carlos, García-Verdugo
Alan D, Forrest
Michael F, Fay
Pablo, Vargas
Source :
Evolution; international journal of organic evolution. 64(12)
Publication Year :
2010

Abstract

Theoretical and empirical studies suggest that geographical isolation and extinction-recolonization dynamics are two factors causing strong genetic structure in metapopulations, but their consequences in species with high dispersal abilities have not been tested at large scales. Here, we investigated the effect of population age structure and isolation by distance in the patterns of genetic diversity in a wind-pollinated, zoochorous tree (Olea europaea subsp. guanchica) sporadically affected by volcanic events across the Canarian archipelago. Genetic variation was assessed at six nuclear microsatellites (nDNA) and six chloroplast fragments (cpDNA) in nine subpopulations sampled on four oceanic islands. Subpopulations occurring on more recent substrates were more differentiated than those on older substrates, but within-subpopulation genetic diversity was not significantly different between age groups for any type of marker. Isolation-by-distance differentiation was observed for nDNA but not for cpDNA, in agreement with other metapopulation studies. Contrary to the general trend for island systems, between-island differentiation was extremely low, and lower than differentiation between subpopulations on the same island. The pollen-to-seed ratio was close to one, two orders of magnitude lower than the average estimated for other wind-pollinated, animal-dispersed plants. Our results showed that population turnover and geographical isolation increased genetic differentiation relative to an island model at equilibrium, but overall genetic structure was unexpectedly weak for a species distributed among islands. This empirical study shows that extensive gene flow, particularly mediated by seeds, can ameliorate population subdivision resulting from extinction-recolonization dynamics and isolation by distance.

Details

ISSN :
15585646
Volume :
64
Issue :
12
Database :
OpenAIRE
Journal :
Evolution; international journal of organic evolution
Accession number :
edsair.pmid..........af91ad1b944225e1ff7b1cea2fdee77e