Back to Search Start Over

The differential regulation of human ACT1 isoforms by Hsp90 in IL-17 signaling1

Authors :
Wu, Ling
Wang, Chenhui
Boisson, Bertrand
Misra, Saurav
Rayman, Patricia
Finke, James H.
Puel, Anne
Casanova, Jean-Laurent
Li, Xiaoxia
Publication Year :
2014

Abstract

IL-17 is a proinflammatory cytokine implicated in the pathogenesis of autoimmune diseases including psoriasis. ACT1 is an essential adaptor molecule in the IL-17 signaling pathway. A missense single nucleotide polymorphism (rs33980500; SNP-D10N) that resulted in the substitution of an asparagine for an aspartic acid at position 10 of ACT1 (ACT1-D10N) is associated with psoriasis susceptibility. Due to alternative splicing in humans, SNP-D10N encodes two mutated ACT1 proteins, ACT1-D10N and ACT1-D19N. Although both ACT1 isoforms are Hsp90 client proteins, the nine additional amino acids in ACT1-D19N provide an additional Hsp90 binding site that is absent in ACT1-D10N. Therefore, whereas ACT1-D10N is a dead protein that is unable to transduce IL-17 signals for gene expression, ACT1-D19N is fully responsive to IL-17. Intriguingly, the two ACT1 isoforms are differentially expressed in ACT1(D10N/D10N) fibroblasts and T cells. Fibroblasts express both isoforms equally, enabling ACT1-D19N to compensate for the loss of ACT1-D10N function. ACT1(D10N/D10N) T cells, however, express predominantly ACT1-D10N. Lacking this compensatory mechanism, ACT1(D10N/D10N) T cells behave like ACT1-deficient T cells, exhibiting a dysregulated and hyperactive Th17 phenotype with overproduction of IL-22 and IL-17. The hyperactive Th17 response combined with fully responsive fibroblasts likely synergized to contribute to psoriasis susceptibility in SNP-D10N patients.

Details

Language :
English
ISSN :
33980500
Database :
OpenAIRE
Accession number :
edsair.pmid..........b5b6e84cb467b7fa614b0a976b0931ea