Back to Search Start Over

Stimulatory effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells: activation of aminoacyl-tRNA synthetase

Authors :
M, Yamaguchi
E, Sugimoto
Source :
Molecular and cellular biochemistry. 214(1-2)
Publication Year :
2001

Abstract

The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in alpha-minimal essential medium containing either vehicle, genistein (l0(-7) - 10(-5) M) or daidzein (10(-7) - 10(-5) M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein ( 10(-5) M) or daidzein ( 10(-5) M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) in the absence or presence of isoflavones. Moreover, when genistein (10(-7) 10(-5) M) or daidzein (10(-6) and 10(-5) M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10(-7) M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10(-6) and 10(-5) M) or daidzein (10(-5) M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.

Details

ISSN :
03008177
Volume :
214
Issue :
1-2
Database :
OpenAIRE
Journal :
Molecular and cellular biochemistry
Accession number :
edsair.pmid..........b756af08afd02a8f1db8d16ba2b3a716