Back to Search
Start Over
A multipleāmodel generalisation of updating clinical prediction models
- Source :
- Statistics in Medicine
- Publication Year :
- 2017
- Publisher :
- John Wiley and Sons Inc., 2017.
-
Abstract
- There is growing interest in developing clinical prediction models (CPMs) to aid local healthcare decision-making. Frequently, these CPMs are developed in isolation across different populations, with repetitive de novo derivation a common modelling strategy. However, this fails to utilise all available information and does not respond to changes in health processes through time and space. Alternatively, model updating techniques have previously been proposed that adjust an existing CPM to suit the new population, but these techniques are restricted to a single model. Therefore, we aimed to develop a generalised method for updating and aggregating multiple CPMs. The proposed "hybrid method" re-calibrates multiple CPMs using stacked regression while concurrently revising specific covariates using individual participant data (IPD) under a penalised likelihood. The performance of the hybrid method was compared with existing methods in a clinical example of mortality risk prediction after transcatheter aortic valve implantation, and in 2 simulation studies. The simulation studies explored the effect of sample size and between-population-heterogeneity on the method, with each representing a situation of having multiple distinct CPMs and 1 set of IPD. When the sample size of the IPD was small, stacked regression and the hybrid method had comparable but highest performance across modelling methods. Conversely, in large IPD samples, development of a new model and the hybrid method gave the highest performance. Hence, the proposed strategy can inform the choice between utilising existing CPMs or developing a model de novo, thereby incorporating IPD, existing research, and prior (clinical) knowledge into the modelling strategy.
- Subjects :
- validation
Aged, 80 and over
Male
logistic regression
model updating
Reproducibility of Results
clinical prediction models
Aortic Valve Stenosis
Risk Assessment
Decision Support Techniques
Transcatheter Aortic Valve Replacement
stacked regression
Logistic Models
Aortic Valve
Linear Models
Humans
Regression Analysis
Computer Simulation
Female
Research Articles
model aggregation
Research Article
Aged
Probability
Subjects
Details
- Language :
- English
- ISSN :
- 10970258 and 02776715
- Volume :
- 37
- Issue :
- 8
- Database :
- OpenAIRE
- Journal :
- Statistics in Medicine
- Accession number :
- edsair.pmid..........bf0884870d2ba95277141b23bc8e420b