Back to Search Start Over

Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8en00038g

Authors :
Kah, Melanie
Walch, Helene
Hofmann, Thilo
Source :
Environmental Science. Nano
Publication Year :
2018
Publisher :
Royal Society of Chemistry, 2018.

Abstract

A lot of research efforts are currently dedicated to the development of nano-enabled agrochemicals. It is thus urgent to develop suitable strategies for their ecological assessment.<br />A lot of research efforts are currently dedicated to the development of nano-enabled agrochemicals. Knowledge about their environmental behaviour is however scarce, which impedes the assessment of the new risk and benefits relative to currently used agrochemicals. With the aim to advance our understanding of the fate of nanopesticides in the environment and support the development of robust exposure assessment procedures, the main objectives of the study were to (i) investigate the extent to which three nanoformulations can affect the photodegradation and sorption of the insecticide clothianidin, and (ii) evaluate various approaches to estimate durability, a key parameter for the exposure assessment of nanopesticides. The nanoformulations increased the photodegradation half-life in water by a maximum of 21% relative to the conventional formulation. Sorption to soil was investigated by two methods and over time, and results show that sorption was increased by up to 51% and 10%, relative to unformulated clothianidin and the commercial formulation, respectively. Our results generally indicate that nanoformulations may have a greater impact on the fate of pesticide active ingredients than commercial formulations. It is important to note however that differences in fate parameters were generally very moderate, including in realistic worst-case conditions (high pesticide concentration and ionic strength). Our results collectively suggest that clothianidin was rapidly released from the nanocarrier systems and that the durability of the three nanoformulations would be short in water as well as in soil environments (including under realistic soil to solution ratio). The durability of nanoformulations after their application in the environment is an essential parameter that needs to be characterised for the development as well as for the evaluation of nano-enabled agrochemicals. This study illustrates how performances of nano-enabled products can be critically benchmarked against existing products to support an objective assessment of new environmental risks and benefits. In this context, the fate of the nanocarrier system is of great interest and should be the topic of further research.

Subjects

Subjects :
Chemistry

Details

Language :
English
ISSN :
20518161 and 20518153
Volume :
5
Issue :
4
Database :
OpenAIRE
Journal :
Environmental Science. Nano
Accession number :
edsair.pmid..........ed88fe7dc1e3b461b523cb0452a5097b