Back to Search Start Over

Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME

Authors :
Rössler, Ingrid
Embacher, Julia
Pillet, Benjamin
Murat, Guillaume
Liesinger, Laura
Hafner, Jutta
Unterluggauer, Julia Judith
Birner-Gruenberger, Ruth
Kressler, Dieter
Pertschy, Brigitte
Source :
Nucleic Acids Research
Publication Year :
2019

Abstract

Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co- translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.pmid.dedup....42873a17cad8322892ce954e90d454e7