Back to Search Start Over

Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization Study

Authors :
Granell, Raquel
Henderson, A. John
Evans, David M.
Smith, George Davey
Ness, Andrew R.
Lewis, Sarah
Palmer, Tom M.
Sterne, Jonathan A. C.
Source :
PLoS Medicine, PLoS Medicine, Vol 11, Iss 7, p e1001669 (2014)
Publication Year :
2014
Publisher :
Public Library of Science, 2014.

Abstract

In this study, Granell and colleagues used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ years in the Avon Longitudinal Study of Parents and Children (ALSPAC) and found that higher BMI increases the risk of asthma in mid-childhood. Please see later in the article for the Editors' Summary<br />Background Observational studies have reported associations between body mass index (BMI) and asthma, but confounding and reverse causality remain plausible explanations. We aim to investigate evidence for a causal effect of BMI on asthma using a Mendelian randomization approach. Methods and Findings We used Mendelian randomization to investigate causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ y in the Avon Longitudinal Study of Parents and Children (ALSPAC). A weighted allele score based on 32 independent BMI-related single nucleotide polymorphisms (SNPs) was derived from external data, and associations with BMI, fat mass, lean mass, and asthma were estimated. We derived instrumental variable (IV) estimates of causal risk ratios (RRs). 4,835 children had available data on BMI-associated SNPs, asthma, and BMI. The weighted allele score was strongly associated with BMI, fat mass, and lean mass (all p-values<br />Editors' Summary Background The global burden of asthma, a chronic (long-term) condition caused by inflammation of the airways (the tubes that carry air in and out of the lungs), has been rising steadily over the past few decades. It is estimated that, nowadays, 200–300 million adults and children worldwide are affected by asthma. Although asthma can develop at any age, it is often diagnosed in childhood—asthma is the most common chronic disease in children. In people with asthma, the airways can react very strongly to allergens such as animal fur or to irritants such as cigarette smoke, becoming narrower so that less air can enter the lungs. Exercise, cold air, and infections can also trigger asthma attacks, which can be fatal. The symptoms of asthma include wheezing, coughing, chest tightness, and shortness of breath. Asthma cannot be cured, but drugs can relieve its symptoms and prevent acute asthma attacks. Why Was This Study Done? We cannot halt the ongoing rise in global asthma rates without understanding the causes of asthma. Some experts think obesity may be one cause of asthma. Obesity, like asthma, is increasingly common, and observational studies (investigations that ask whether individuals exposed to a suspected risk factor for a condition develop that condition more often than unexposed individuals) in children have reported that body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) is positively associated with asthma. Observational studies cannot prove that obesity causes asthma because of “confounding.” Overweight children with asthma may share another unknown characteristic (confounder) that actually causes both obesity and asthma. Moreover, children with asthma may be less active than unaffected children, so they become overweight (reverse causality). Here, the researchers use “Mendelian randomization” to assess whether BMI has a causal effect on asthma. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the effect of a modifiable risk factor and the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if a higher BMI leads to asthma, genetic variants associated with increased BMI should be associated with an increased risk of asthma. What Did the Researchers Do and Find? The researchers investigated causal effects of BMI, fat mass, and lean mass on current asthma at age 7½ years in 4,835 children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC, a long-term health project that started in 1991). They calculated an allele score for each child based on 32 BMI-related genetic variants, and estimated associations between this score and BMI, fat mass and lean mass (both measured using a special type of X-ray scanner; in children BMI is not a good indicator of “fatness”), and asthma. They report that the allele score was strongly associated with BMI, fat mass, and lean mass, and with childhood asthma. The estimated causal relative risk (risk ratio) for the effect of BMI on asthma was 1.55 per kg/m2. That is, the relative risk of asthma increased by 55% for every extra unit of BMI. The estimated causal relative risks for the effects of fat mass and lean mass on asthma were 1.41 per 0.5 kg and 2.25 per kg, respectively. What Do These Findings Mean? These findings suggest that a higher BMI increases the risk of asthma in mid-childhood and that global increases in BMI toward the end of the 20th century may have contributed to the global increase in asthma that occurred at the same time. It is possible that the observed association between BMI and asthma reported in this study is underpinned by “genetic pleiotropy” (a potential limitation of all Mendelian randomization analyses). That is, some of the genetic variants included in the BMI allele score could conceivably also increase the risk of asthma. Nevertheless, these findings suggest that public health interventions designed to reduce obesity may also help to limit the global rise in asthma. Additional Information Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001669. The US Centers for Disease Control and Prevention provides information on asthma and on all aspects of overweight and obesity (in English and Spanish) The World Health Organization provides information on asthma and on obesity (in several languages) The UK National Health Service Choices website provides information about asthma, about asthma in children, and about obesity (including real stories) The Global Asthma Report 2011 is available The Global Initiative for Asthma released its updated Global Strategy for Asthma Management and Prevention on World Asthma Day 2014 Information about the Avon Longitudinal Study of Parents and Children is available MedlinePlus provides links to further information on obesity in children, on asthma, and on asthma in children (in English and Spanish Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)

Details

Language :
English
ISSN :
15491676 and 15491277
Volume :
11
Issue :
7
Database :
OpenAIRE
Journal :
PLoS Medicine
Accession number :
edsair.pmid.dedup....540381d7651bf292e5974b8848123bb6