Back to Search Start Over

Impact of 3-deazapurine nucleobases on RNA properties

Authors :
Bereiter, Raphael
Himmelstoß, Maximilian
Renard, Eva
Mairhofer, Elisabeth
Egger, Michaela
Breuker, Kathrin
Kreutz, Christoph
Ennifar, Eric
Micura, Ronald
Architecture et réactivité de l'ARN (ARN)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Architecture et Réactivité de l'ARN (ARN)
Institut de biologie moléculaire et cellulaire (IBMC)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nucleic Acids Research, Nucleic Acids Research, Oxford University Press, 2021, 49 (8), pp.4281-4293. ⟨10.1093/nar/gkab256⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.

Details

Language :
English
ISSN :
03051048 and 13624962
Database :
OpenAIRE
Journal :
Nucleic Acids Research, Nucleic Acids Research, Oxford University Press, 2021, 49 (8), pp.4281-4293. ⟨10.1093/nar/gkab256⟩
Accession number :
edsair.pmid.dedup....684dc50f9ff51870367a2395a43c7870