Back to Search Start Over

Modulation of PAR(1) signalling by benzimidazole compounds

Authors :
Asteriti, S
Daniele, S
Porchia, F
Dell'Anno, Mt
Fazzini, A
Pugliesi, I
Trincavelli, Ml
Taliani, S
Martini, C
Mazzoni, Mr
Gilchrist, A
Source :
British journal of pharmacology. 167(1)
Publication Year :
2012

Abstract

Recently, a small molecule (Q94) was reported to selectively block PAR(1) /Gα(q) interaction and signalling. Here, we describe the pharmacological properties of Q94 and two analogues that share its benzimidazole scaffold (Q109, Q89). Q109 presents a modest variation from Q94 in the substituent group at the 2-position, while Q89 has quite different groups at the 1- and 2-positions.Using human microvascular endothelial cells, we examined intracellular Ca(2+) mobilization and inositol 1,4,5-trisphosphate accumulation as well as isoprenaline- or forskolin-stimulated cAMP production in response to thrombin.Q89 (10 µM) produced a leftward shift in the thrombin-mediated intracellular Ca(2+) mobilization concentration-response curve while having no effect on the E(max) . Both Q94 (10 µM) and Q109 (10 µM) reduced intracellular Ca(2+) mobilization, leading to a decrease in E(max) and an increase in EC(50) values. Experiments utilizing receptor-specific activating peptides confirmed that Q94 and Q109 were selective for PAR(1) as they did not alter the Ca(2+) response mediated by a PAR(2) activating peptide. Consistent with our Ca(2+) results, micromolar concentrations of either Q94 or Q109 significantly reduced thrombin-induced inositol 1,4,5-trisphosphate production. Neither Q94 nor Q109 diminished the inhibitory effects of thrombin on cAMP production, indicating they inhibit signalling selectively through the G(q) pathway. Our results also suggest the 1,2-disubstituted benzimidazole derivatives act as 'allosteric agonists' of PAR(1) .The Q94 and Q109 benzimidazole derivatives represent a novel scaffold for the development of new PAR(1) inhibitors and provide a starting point to develop dual signalling pathway-selective positive/negative modulators of PAR(1) .

Details

ISSN :
14765381
Volume :
167
Issue :
1
Database :
OpenAIRE
Journal :
British journal of pharmacology
Accession number :
edsair.pmid.dedup....87fc7505d816e5582f530b6416fd167c