Back to Search Start Over

Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina

Authors :
Agulhon, C.
Platel, J. C.
Kolomiets, B.
Forster, V.
Picaud, S.
Jacques Brocard
Faure, P.
Brulet, P.
Embryologie Moléculaire
Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
Dynamique des Reseaux Neuronaux
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Laboratoire de Physiopathologie Cellulaire et Moleculaire de la Retine
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Organisation Fonctionnelle du Cytosquelette
Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR27
Neurobiologie Intégrative des Systèmes Cholinergiques (NISC)
Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Source :
The Journal of Physiology, The Journal of Physiology, 2007, 583 (Pt 3), pp.945-58. ⟨10.1113/jphysiol.2007.135715⟩, The Journal of Physiology, Wiley, 2007, 583 (Pt 3), pp.945-58. ⟨10.1113/jphysiol.2007.135715⟩, ResearcherID
Publication Year :
2007
Publisher :
HAL CCSD, 2007.

Abstract

Glial Ca(2+) excitability plays a key role in reciprocal neuron-glia communication. In the retina, neuron-glia signalling is expected to be maximal in the dark, but the glial Ca(2+) signal characteristics under such conditions have not been evaluated. To address this question, we used bioluminescence imaging to monitor spontaneous Ca(2+) changes under dark conditions selectively in Müller cells, the principal retinal glial cells. By combining this imaging approach with network analysis, we demonstrate that activity in Müller cells is organized in networks of coactive cells, involving 2-16 cells located distantly and/or in clusters. We also report that spontaneous activity of small networks (2-6 Müller cells) repeat over time, sometimes in the same sequential order, revealing specific temporal dynamics. In addition, we show that networks of coactive glial cells are inhibited by TTX, indicating that ganglion and/or amacrine neuronal cells probably regulate Müller cell network properties. These results represent the first demonstration that spontaneous activity in adult Müller cells is patterned into correlated networks that display repeated sequences of coactivations over time. Furthermore, our bioluminescence technique provides a novel tool to study the dynamic characteristics of glial Ca(2+) events in the retina under dark conditions, which should greatly facilitate future investigations of retinal dark-adaptive processes.

Details

Language :
English
ISSN :
00223751 and 14697793
Database :
OpenAIRE
Journal :
The Journal of Physiology, The Journal of Physiology, 2007, 583 (Pt 3), pp.945-58. ⟨10.1113/jphysiol.2007.135715⟩, The Journal of Physiology, Wiley, 2007, 583 (Pt 3), pp.945-58. ⟨10.1113/jphysiol.2007.135715⟩, ResearcherID
Accession number :
edsair.pmid.dedup....a459b963cdab35ea2c8e6435020f6964
Full Text :
https://doi.org/10.1113/jphysiol.2007.135715⟩