Back to Search Start Over

Protein kinase C θ regulates the phenotype of murine CD4+ Th17 cells

Authors :
Katarzyna, Wachowicz
Natascha, Hermann-Kleiter
Marlies, Meisel
Kerstin, Siegmund
Nikolaus, Thuille
Gottfried, Baier
Source :
PLoS ONE, Vol 9, Iss 5, p e96401 (2014), PLoS ONE
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

Protein kinase C θ (PKCθ) is involved in signaling downstream of the T cell antigen receptor (TCR) and is important for shaping effector T cell functions and inflammatory disease development. Acquisition of Th1-like effector features by Th17 cells has been linked to increased pathogenic potential. However, the molecular mechanisms underlying Th17/Th1 phenotypic instability remain largely unknown. In the current study, we address the role of PKCθ in differentiation and function of Th17 cells by using genetic knock-out mice. Implementing in vitro (polarizing T cell cultures) and in vivo (experimental autoimmune encephalomyelitis model, EAE) techniques, we demonstrated that PKCθ-deficient CD4+ T cells show normal Th17 marker gene expression (interleukin 17A/F, RORγt), accompanied by enhanced production of the Th1-typical markers such as interferon gamma (IFN-γ) and transcription factor T-bet. Mechanistically, this phenotype was linked to aberrantly elevated Stat4 mRNA levels in PKCθ−/− CD4+ T cells during the priming phase of Th17 differentiation. In contrast, transcription of the Stat4 gene was suppressed in Th17-primed wild-type cells. This change in cellular effector phenotype was reflected in vivo by prolonged neurological impairment of PKCθ-deficient mice during the course of EAE. Taken together, our data provide genetic evidence that PKCθ is critical for stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-γ/T-bet axis at the onset of differentiation.

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
5
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.pmid.dedup....c09b3c9335643cc9bbcf0e43c469fbdf