Back to Search
Start Over
Propylthiouracil prevents cutaneous and pulmonary fibrosis in the reactive oxygen species murine model of systemic sclerosis
- Source :
- Arthritis Research & Therapy
- Publication Year :
- 2013
-
Abstract
- Introduction Recent advances suggest that the cellular redox state may play a significant role in the progression of fibrosis in systemic sclerosis (SSc). Another, and as yet poorly accounted for, feature of SSc is its overlap with thyroid abnormalities. Previous reports demonstrate that hypothyroidism reduces oxidant stress. The aim of this study was therefore to evaluate the effect of propylthiouracil (PTU), and of the hypothyroidism induced by it, on the development of cutaneous and pulmonary fibrosis in the oxidant stress murine model of SSc. Methods Chronic oxidant stress SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl) for 6 weeks. Mice (n = 25) were randomized into three arms: HOCl (n = 10), HOCl plus PTU (n = 10) or vehicle alone (n = 5). PTU administration was initiated 30 minutes after HOCl subcutaneous injection and continued daily for 6 weeks. Skin and lung fibrosis were evaluated by histologic methods. Immunohistochemical staining for alpha-smooth muscle actin (α-SMA) in cutaneous and pulmonary tissues was performed to evaluate myofibroblast differentiation. Lung and skin concentrations of vascular endothelial growth factor (VEGF), extracellular signal-related kinase (ERK), rat sarcoma protein (Ras), Ras homolog gene family (Rho), and transforming growth factor (TGF) β were analyzed by Western blot. Results Injections of HOCl induced cutaneous and lung fibrosis in BALB/c mice. PTU treatment prevented both dermal and pulmonary fibrosis. Myofibroblast differentiation was also inhibited by PTU in the skin and lung. The increase in cutaneous and pulmonary expression of VEGF, ERK, Ras, and Rho in mice treated with HOCl was significantly prevented in mice co-administered ////with PTU. Conclusions PTU, probably through its direct effect on reactive oxygen species or indirectly through thyroid function inhibition, prevents the development of cutaneous and pulmonary fibrosis by blocking the activation of the Ras-ERK pathway in the oxidant-stress animal model of SSc.
- Subjects :
- Vascular Endothelial Growth Factor A
endocrine system
Pulmonary Fibrosis
Immunology
Blotting, Western
Thyrotropin
Mice
Random Allocation
Rheumatology
Antithyroid Agents
Hypothyroidism
Immunology and Allergy
Animals
Extracellular Signal-Regulated MAP Kinases
Skin
Mice, Inbred BALB C
Scleroderma, Systemic
Muscle, Smooth
Oxidants
Fibrosis
Immunohistochemistry
Actins
Hypochlorous Acid
Disease Models, Animal
Thyroxine
Propylthiouracil
ras Proteins
Triiodothyronine
Female
Research Article
Subjects
Details
- ISSN :
- 14786362
- Volume :
- 15
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Arthritis researchtherapy
- Accession number :
- edsair.pmid.dedup....ec100ec3eb7a4aaf5c0196894ec52f76