Back to Search Start Over

Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype

Authors :
Cooper-Knock, Johnathan
Robins, Henry
Niedermoser, Isabell
Wyles, Matthew
Heath, Paul R.
Higginbottom, Adrian
Walsh, Theresa
Kazoka, Mbombe
Al Kheifat, Ahmad
Al-Chalabi, Ammar
Basak, Nazli
Blair, Ian
Dekker, Annelot
Hardiman, Orla
Hide, Winston
Iacoangeli, Alfredo
Kenna, Kevin
Landers, John
Mclaughlin, Russel
Mill, Jonathan
Middelkoop, Bas
Moisse, Mattieu
Pardina, Jesus Mora
Morrison, Karen
Newhouse, Stephen
Pulit, Sara
Shatunov, Aleksey
Shaw, Chris
Sproviero, William
Tazelaar, Gijs
van Damme, Philip
van den Berg, Leonard
van der Spek, Rick
Eijk, Kristelvan
van Es, Michael
van Rheenen, Wouter
van Vugt, Joke
Veldink, Jan
Kooyman, Maarten
Glass, Jonathan
Robberecht, Wim
Gotkine, Marc
Drory, Vivian
Kiernan, Matthew
Neto, Miguel Mitne
Ztaz, Mayana
Couratier, Philippe
Corcia, Philippe
Silani, Vincenzo
Chio, Adriano
de Carvalho, Mamede
Pinto, Susana
Redondo, Alberto Garcia
Andersen, Peter
Weber, Markus
Ticozzi, Nicola
Ince, Paul G.
Hautbergue, Guillaume M.
Mcdermott, Christopher J.
Kirby, Janine
Shaw, Pamela J.
Robberecht, Wim
Van Damme, Philip
Source :
Frontiers in Molecular Neuroscience, Repositorio Institucional de la Consejería de Sanidad de la Comunidad de Madrid, Consejería de Sanidad de la Comunidad de Madrid
Publication Year :
2017
Publisher :
Frontiers Media S.A., 2017.

Abstract

Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes (n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72. We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies (p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression (t-test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course (t-test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development. ispartof: Frontiers in Molecular Neuroscience vol:10 ispartof: location:Switzerland status: published

Details

Language :
English
ISSN :
16625099
Volume :
10
Database :
OpenAIRE
Journal :
Frontiers in Molecular Neuroscience
Accession number :
edsair.pmid.dedup....f12a4207738607d51456a62d8dc359fa