Back to Search Start Over

On disjoint matchings in cubic graphs

Authors :
Mkrtchyan, Vahan V.
Petrosyan, Samvel S.
Vardanyan, Gagik N.
Source :
Discrete Mathematics, 310/10-11 (2010), pp. 1588-1613
Publication Year :
2008

Abstract

For $i=2,3$ and a cubic graph $G$ let $\nu_{i}(G)$ denote the maximum number of edges that can be covered by $i$ matchings. We show that $\nu_{2}(G)\geq {4/5}| V(G)| $ and $\nu_{3}(G)\geq {7/6}| V(G)| $. Moreover, it turns out that $\nu_{2}(G)\leq \frac{|V(G)|+2\nu_{3}(G)}{4}$.<br />Comment: 41 pages, 8 figures, minor chages

Details

Database :
arXiv
Journal :
Discrete Mathematics, 310/10-11 (2010), pp. 1588-1613
Publication Type :
Report
Accession number :
edsarx.0803.0134
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.disc.2010.02.007