Back to Search
Start Over
On disjoint matchings in cubic graphs
- Source :
- Discrete Mathematics, 310/10-11 (2010), pp. 1588-1613
- Publication Year :
- 2008
-
Abstract
- For $i=2,3$ and a cubic graph $G$ let $\nu_{i}(G)$ denote the maximum number of edges that can be covered by $i$ matchings. We show that $\nu_{2}(G)\geq {4/5}| V(G)| $ and $\nu_{3}(G)\geq {7/6}| V(G)| $. Moreover, it turns out that $\nu_{2}(G)\leq \frac{|V(G)|+2\nu_{3}(G)}{4}$.<br />Comment: 41 pages, 8 figures, minor chages
- Subjects :
- Computer Science - Discrete Mathematics
Subjects
Details
- Database :
- arXiv
- Journal :
- Discrete Mathematics, 310/10-11 (2010), pp. 1588-1613
- Publication Type :
- Report
- Accession number :
- edsarx.0803.0134
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.disc.2010.02.007