Back to Search
Start Over
Electron mobility in silicon nanowires
- Source :
- IEEE Trans. Nanotech. 6, 113 (2007)
- Publication Year :
- 2008
-
Abstract
- The low-field electron mobility in rectangular silicon nanowire (SiNW) transistors was computed using a self-consistent Poisson-Schr\"{o}dinger-Monte Carlo solver. The behavior of the phonon-limited and surface-roughness-limited components of the mobility was investigated by decreasing the wire width from 30 nm to 8 nm, the width range capturing a crossover between two-dimensional (2D) and one-dimensional (1D) electron transport. The phonon-limited mobility, which characterizes transport at low and moderate transverse fields, is found to decrease with decreasing wire width due to an increase in the electron-phonon wavefunction overlap. In contrast, the mobility at very high transverse fields, which is limited by surface roughness scattering, increases with decreasing wire width due to volume inversion. The importance of acoustic phonon confinement is also discussed briefly.
Details
- Database :
- arXiv
- Journal :
- IEEE Trans. Nanotech. 6, 113 (2007)
- Publication Type :
- Report
- Accession number :
- edsarx.0806.4347
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/TNANO.2006.888521