Back to Search Start Over

On the derivation of Fourier's law in stochastic energy exchange systems

Authors :
Gaspard, Pierre
Gilbert, Thomas
Source :
J. Stat. Mech. (2008) P11021
Publication Year :
2008

Abstract

We present a detailed derivation of Fourier's law in a class of stochastic energy exchange systems that naturally characterize two-dimensional mechanical systems of locally confined particles in interaction. The stochastic systems consist of an array of energy variables which can be partially exchanged among nearest neighbours at variable rates. We provide two independent derivations of the thermal conductivity and prove this quantity is identical to the frequency of energy exchanges. The first derivation relies on the diffusion of the Helfand moment, which is determined solely by static averages. The second approach relies on a gradient expansion of the probability measure around a non-equilibrium stationary state. The linear part of the heat current is determined by local thermal equilibrium distributions which solve a Boltzmann-like equation. A numerical scheme is presented with computations of the conductivity along our two methods. The results are in excellent agreement with our theory.<br />Comment: 19 pages, 5 figures, to appear in Journal of Statistical Mechanics (JSTAT)

Details

Database :
arXiv
Journal :
J. Stat. Mech. (2008) P11021
Publication Type :
Report
Accession number :
edsarx.0809.3967
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1742-5468/2008/11/P11021