Back to Search Start Over

Microtubule depolymerization by the kinesin-8 motor Kip3p: a mathematical model

Authors :
Hough, L. E.
Schwabe, Anne
Glaser, Matthew A.
McIntosh, J. Richard
Betterton, M. D.
Publication Year :
2008

Abstract

Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-end directed motility on MTs. Here we describe a simple model that incorporates directional motion and destabilization of the MT plus end by kinesin 8. Our model quantitatively reproduces the key features of length-vs-time traces for stabilized MTs in the presence of purified kinesin 8, including length-dependent depolymerization. Comparison of model predictions with experiments suggests that kinesin 8 depolymerizes processively, i.e., one motor can remove multiple tubulin dimers from a stabilized MT. Fluctuations in MT length as a function of time are related to depolymerization processivity. We have also determined the parameter regime in which the rate of MT depolymerization is length dependent: length-dependent depolymerization occurs only when MTs are sufficiently short; this crossover is sensitive to the bulk motor concentration.<br />Comment: 34 pages, 11 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.0812.3908
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.bpj.2009.01.017