Back to Search Start Over

Contraction of fermionic operator circuits and the simulation of strongly correlated fermions

Authors :
Barthel, Thomas
Pineda, Carlos
Eisert, Jens
Source :
Phys. Rev. A 80, 042333 (2009)
Publication Year :
2009

Abstract

A fermionic operator circuit is a product of fermionic operators of usually different and partially overlapping support. Further elements of fermionic operator circuits (FOCs) are partial traces and partial projections. The presented framework allows for the introduction of fermionic versions of known qudit operator circuits (QUOC), important for the simulation of strongly correlated d-dimensional systems: The multiscale entanglement renormalization ansatz (MERA), tree tensor networks (TTN), projected entangled pair states (PEPS), or their infinite-size versions (iPEPS etc.). After the definition of a FOC, we present a method to contract it with the same computation and memory requirements as a corresponding QUOC, for which all fermionic operators are replaced by qudit operators of identical dimension. A given scheme for contracting the QUOC relates to an analogous scheme for the corresponding fermionic circuit, where additional marginal computational costs arise only from reordering of modes for operators occurring in intermediate stages of the contraction. Our result hence generalizes efficient schemes for the simulation of d-dimensional spin systems, as MERA, TTN, or PEPS to the fermionic case.<br />Comment: 12 pages, 9 pdf figures; published version

Details

Database :
arXiv
Journal :
Phys. Rev. A 80, 042333 (2009)
Publication Type :
Report
Accession number :
edsarx.0907.3689
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.80.042333