Back to Search Start Over

Ab initio prediction of Boron compounds arising from Borozene: Structural and electronic properties

Authors :
Forte, G.
La Magna, A.
Deretzis, I.
Pucci, R.
Publication Year :
2009

Abstract

Structure and electronic properties of two unusual boron clusters obtained by fusion of borozene rings has been studied by means of first principles calculations, based on the generalized-gradient approximation of the density functional theory, and the semiempirical tight-binding method was used for the transport calculations. The role of disorder has also been considered with single vacancies and substitutional atoms. Results show that the pure boron clusters are topologically planar and characterized by (3c-2e) bonds, which can explain, together with the aromaticity (estimated by means of NICS), the remarkable cohesive energy values obtained. Such feature makes these systems competitive with the most stable boron clusters to date. On the contrary, the introduction of impurities compromises stability and planarity in both cases. The energy gap values indicate that these clusters possess a semiconducting character, while when the larger system is considered, zero-values of the density of states are found exclusively within the HOMO-LUMO gap. Electron transport calculations within the Landauer formalism confirm these indications, showing semiconductor-like low bias differential conductance for these stuctures. Differences and similarities with Carbon clusters are highlighted in the discussion.<br />Comment: 10 pages, 2 tables, 5 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.0908.1153
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s11671-009-9458-8