Back to Search Start Over

Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

Authors :
Huang, Jer-Shing
Callegari, Victor
Geisler, Peter
BrĂ¼ning, Christoph
Kern, Johannes
Prangsma, Jord C.
Wu, Xiaofei
Feichtner, Thorsten
Ziegler, Johannes
Weinmann, Pia
Kamp, Martin
Forchel, Alfred
Biagioni, Paolo
Sennhauser, Urs
Hecht, Bert
Source :
Nature Communications 1, 150 (2010)
Publication Year :
2010

Abstract

Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance for the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. So far the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements will drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large (>100 micron^2) but thin (<80 nm) chemically grown single-crystalline gold flakes, which, after immobilization, serve as an ideal basis for focused-ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometer length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and to realize high-definition plasmonic nanocircuitry.<br />Comment: 28 pages, 14 figures, including Supporting Information (11 pages, 10 figures)

Details

Database :
arXiv
Journal :
Nature Communications 1, 150 (2010)
Publication Type :
Report
Accession number :
edsarx.1004.1961
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/ncomms1143