Back to Search Start Over

Emergence of the N=16 shell gap in 21O

Authors :
Fernandez-Dominguez, B.
Thomas, J. S.
Catford, W. N.
Delaunay, F.
Brown, S. M.
Orr, N. A.
Rejmund, M.
Achouri, N. L.
Falou, H. Al
Ashwood, N. A.
Beaumel, D.
Blumenfeld, Y.
Brown, B. A.
Chapman, R.
Chartier, M.
Curtis, N.
Force, C.
de France, G.
Franchoo, S.
Guillot, J.
Haigh, P.
Hammache, F.
Labiche, M.
Lapoux, V.
Lemmon, R. C.
Marechal, F.
Moro, A.
Martin, B.
Mougeot, X.
Mouginot, B.
Nalpas, L.
Navin, A.
Patterson, N.
Pietras, B.
Pollacco, E. C.
Leprince, A.
Ramus, A.
Scarpaci, J. A.
de Séréville, N.
Stefan, I.
Sorlin, O.
Wilson, G.
Source :
Phys.Rev.C84:011301,2011; Publisher-note C84:029902,2011; Phys.Rev.C84:029902,2011
Publication Year :
2010

Abstract

The spectroscopy of 21O has been investigated using a radioactive 20O beam and the (d,p) reaction in inverse kinematics. The ground and first excited states have been determined to be Jpi=5/2+ and Jpi=1/2+ respectively. Two neutron unbound states were observed at excitation energies of 4.76 +- 0.10 and 6.16 +- 0.11. The spectroscopic factor deduced for the lower of these interpreted as a 3/2+ level, reveals a rather pure 0d3/2 single-particle configuration. The large energy difference between the 3/2+ and 1/2+ states is indicative of the emergence of the N=16 magic number. For the higher lying resonance, which has a character consistent with a spin-parity assignment of 3/2+ or 7/2-, a 71% branching ratio to the first 2+ state in 20O has been observed. The results are compared with new shell model calculations.<br />Comment: 5 pages, 2 figures

Subjects

Subjects :
Nuclear Experiment

Details

Database :
arXiv
Journal :
Phys.Rev.C84:011301,2011; Publisher-note C84:029902,2011; Phys.Rev.C84:029902,2011
Publication Type :
Report
Accession number :
edsarx.1012.4040
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevC.84.011301