Back to Search Start Over

Strong law of large number of a class of super-diffusions

Authors :
Liu, Rong-Li
Ren, Yan-Xia
Song, Renming
Publication Year :
2011

Abstract

In this paper we prove that, under certain conditions, a strong law of large numbers holds for a class of super-diffusions $X$ corresponding to the evolution equation $\partial_t u_t=L u_t+\beta u_t-\psi(u_t)$ on a bounded domain $D$ in $\R^d$, where $L$ is the generator of the underlying diffusion and the branching mechanism $\psi(x,\lambda)=1/2\alpha(x)\lambda^2+\int_0^\infty (e^{-\lambda r}-1+\lambda r)n(x, {\rm d}r)$ satisfies $\sup_{x\in D}\int_0^\infty (r\wedge r^2) n(x,{\rm d}r)<\infty$.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1102.3668
Document Type :
Working Paper