Back to Search
Start Over
Strong law of large number of a class of super-diffusions
- Publication Year :
- 2011
-
Abstract
- In this paper we prove that, under certain conditions, a strong law of large numbers holds for a class of super-diffusions $X$ corresponding to the evolution equation $\partial_t u_t=L u_t+\beta u_t-\psi(u_t)$ on a bounded domain $D$ in $\R^d$, where $L$ is the generator of the underlying diffusion and the branching mechanism $\psi(x,\lambda)=1/2\alpha(x)\lambda^2+\int_0^\infty (e^{-\lambda r}-1+\lambda r)n(x, {\rm d}r)$ satisfies $\sup_{x\in D}\int_0^\infty (r\wedge r^2) n(x,{\rm d}r)<\infty$.
- Subjects :
- Mathematics - Probability
60J68, 60G55, 60G57
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1102.3668
- Document Type :
- Working Paper