Back to Search
Start Over
Orientation-to-alignment conversion and spin squeezing
- Publication Year :
- 2011
-
Abstract
- The relationship between orientation-to-alignment conversion (a form of atomic polarization evolution induced by an electric field) and the phenomenon of spin squeezing is demonstrated. A "stretched" state of an atom or molecule with maximum angular-momentum projection along the quantization axis possesses orientation and is a quantum-mechanical minimum-uncertainty state, where the product of the equal uncertainties of the angular-momentum projections on two orthogonal directions transverse to the quantization axis is the minimum allowed by the uncertainty relation. Application of an electric field for a short time induces orientation-to-alignment conversion and produces a spin-squeezed state, in which the quantum state essentially remains a minimum-uncertainty state, but the uncertainties of the angular-momentum projections on the orthogonal directions are unequal. This property can be visualized using the angular-momentum probability surfaces, where the radius of the surface is given by the probability of measuring the maximum angular-momentum projection in that direction. Brief remarks are also given concerning collective-spin squeezing and quantum nondemolition measurements.<br />Comment: 7 pages, 6 figures
- Subjects :
- Physics - Atomic Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1106.3538
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevA.85.022125