Back to Search
Start Over
On the Complexity of Planar Covering of Small Graphs
- Publication Year :
- 2011
-
Abstract
- The problem Cover(H) asks whether an input graph G covers a fixed graph H (i.e., whether there exists a homomorphism G to H which locally preserves the structure of the graphs). Complexity of this problem has been intensively studied. In this paper, we consider the problem PlanarCover(H) which restricts the input graph G to be planar. PlanarCover(H) is polynomially solvable if Cover(H) belongs to P, and it is even trivially solvable if H has no planar cover. Thus the interesting cases are when H admits a planar cover, but Cover(H) is NP-complete. This also relates the problem to the long-standing Negami Conjecture which aims to describe all graphs having a planar cover. Kratochvil asked whether there are non-trivial graphs for which Cover(H) is NP-complete but PlanarCover(H) belongs to P. We examine the first nontrivial cases of graphs H for which Cover(H) is NP-complete and which admit a planar cover. We prove NP-completeness of PlanarCover(H) in these cases.<br />Comment: Full version (including Appendix) of a paper from the conference WG 2011
- Subjects :
- Mathematics - Combinatorics
Computer Science - Discrete Mathematics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1108.0064
- Document Type :
- Working Paper