Back to Search
Start Over
Spatially resolved electronic inhomogeneities of graphene due to subsurface charges
- Source :
- Carbon, 2012. 50(3): pp. 932-938
- Publication Year :
- 2011
-
Abstract
- We probe the local inhomogeneities in the electronic properties of exfoliated graphene due to the presence of charged impurities in the SiO2 substrate using a combined scanning tunneling and electrostatic force microscope. Contact potential difference measurements using electrostatic force microscopy permit us to obtain the average charge density but it does not provide enough resolution to identify individual charges. We find that the tunneling current decay constant, which is related to the local tunneling barrier height, enables one to probe the electronic properties of graphene distorted at the nanometer scale by individual charged impurities. We observe that such inhomogeneities do not show long range ordering and their surface density obtained by direct counting is consistent with the value obtained by macroscopic charge density measurements. These microscopic perturbations of the carrier density significantly alter the electronic properties of graphene, and their characterization is essential for improving the performance of graphene based devices.<br />Comment: 22 pages, 13 figures (including supporting information); Carbon (2011)
Details
- Database :
- arXiv
- Journal :
- Carbon, 2012. 50(3): pp. 932-938
- Publication Type :
- Report
- Accession number :
- edsarx.1111.0840
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.carbon.2011.09.055