Back to Search Start Over

Non-negatively curved 5-manifolds with almost maximal symmetry rank

Authors :
Galaz-Garcia, Fernando
Searle, Catherine
Source :
Geom. Topol. 18 (2014) 1397-1435
Publication Year :
2011

Abstract

We show that a closed, simply-connected, non-negatively curved 5-manifold admitting an effective, isometric $T^2$ action is diffeomorphic to one of $S^5$, $S^3\times S^2$, $S^3\tilde{\times} S^2$ (the non-trivial $S^3$-bundle over $S^2$) or the Wu manifold $SU(3)/SO(3)$.<br />Comment: We fix an omission in a previous posting (arXiv:0906.3870v1 [math.DG])

Details

Database :
arXiv
Journal :
Geom. Topol. 18 (2014) 1397-1435
Publication Type :
Report
Accession number :
edsarx.1111.3183
Document Type :
Working Paper
Full Text :
https://doi.org/10.2140/gt.2014.18.1397