Back to Search
Start Over
Non-negatively curved 5-manifolds with almost maximal symmetry rank
- Source :
- Geom. Topol. 18 (2014) 1397-1435
- Publication Year :
- 2011
-
Abstract
- We show that a closed, simply-connected, non-negatively curved 5-manifold admitting an effective, isometric $T^2$ action is diffeomorphic to one of $S^5$, $S^3\times S^2$, $S^3\tilde{\times} S^2$ (the non-trivial $S^3$-bundle over $S^2$) or the Wu manifold $SU(3)/SO(3)$.<br />Comment: We fix an omission in a previous posting (arXiv:0906.3870v1 [math.DG])
- Subjects :
- Mathematics - Differential Geometry
53C20
Subjects
Details
- Database :
- arXiv
- Journal :
- Geom. Topol. 18 (2014) 1397-1435
- Publication Type :
- Report
- Accession number :
- edsarx.1111.3183
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.2140/gt.2014.18.1397